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Abstract
We introduce models of heterogeneous systems with finite connectivity defined
on random graphs to capture finite-coordination effects on the low-temperature
behaviour of finite-dimensional systems. Our models use a description in terms
of small deviations of particle coordinates from a set of reference positions,
particularly appropriate for the description of low-temperature phenomena.
A Born–von Karman-type expansion with random coefficients is used to
model effects of frozen heterogeneities. The key quantity appearing in the
theoretical description is a full distribution of effective single-site potentials
which needs to be determined self-consistently. If microscopic interactions
are harmonic, the effective single-site potentials turn out to be harmonic as
well, and the distribution of these single-site potentials is equivalent to a
distribution of localization lengths used earlier in the description of chemical
gels. For structural glasses characterized by frustration and anharmonicities in
the microscopic interactions, the distribution of single-site potentials involves
anharmonicities of all orders, and both single-well and double-well potentials
are observed, the latter with a broad spectrum of barrier heights. The
appearance of glassy phases at low temperatures is marked by the appearance of
asymmetries in the distribution of single-site potentials, as previously observed
for fully connected systems. Double-well potentials with a broad spectrum of
barrier heights and asymmetries would give rise to the well-known universal
glassy low-temperature anomalies when quantum effects are taken into
account.
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1. Introduction

Understanding the behaviour of amorphous systems, both at elevated and at low temperatures,
continues to be a challenging problem. Structural glasses, for instance, show intriguing
dynamic and thermodynamic behaviour when they are formed, e.g., by cooling from the
liquid state [1]. A very sharp rise of relaxation times from microscopic to macroscopically
large within a fairly narrow temperature interval entails that such systems will fall out of
(local) equilibrium at a (cooling rate dependent) calorimetric glass-transition temperature Tg ,
accompanied by a sharp drop of the specific heat cp(T ) and thermal expansion coefficient α(T ).
Signatures of a dynamic singularity are, however, observed in many glasses at a temperature Tc

larger than that of the calorimetric transition [1–3]. Such a dynamic singularity was shown to
emerge within a mode coupling theory (MCT)—a description of the dynamics of supercooled
liquids in terms of correlation functions—via nonlinear feedback mechanisms and memory
effects. The dynamic singularity occurs at a temperature where the viscosity is still fairly low;
for a detailed review, see [2].

On a quite different note, structural glasses and other amorphous systems were found
to exhibit thermodynamic, dynamic and transport properties at low temperatures, which are
strikingly different from those of their crystalline counterparts [4]. At temperatures below
1 K, the specific heat of glasses varies approximately linearly with temperature T, the behaviour
of the thermal conductivity is close to quadratic in T, whereas in crystals both quantities are
cubic in temperature. The behaviour of acoustic and dielectric response is also anomalous in
this temperature range, when compared with the corresponding behaviour of crystals [5]. At
temperatures around 10 K there is an anomaly of a different kind in the specific heat which
appears as a bump in the ratio C(T )/T 3—the so-called Bose peak. The thermal conductivity
exhibits a plateau in the Bose peak region, and begins to rise again as the temperature is further
increased.

Below 1 K, the low-temperature anomalies, as the phenomena just described have become
to be referred to, are attributed to the existence of tunnelling systems which are absent in ideal
crystals [6, 7]. Tunnelling systems are thought to be realized as double-well configurations
in the potential energy landscape, between which atoms, or groups of atoms can tunnel, even
when thermal energies to overcome the intervening potential energy barriers are not available.
Double-well potentials with a broad range of asymmetries and barrier heights can give rise to
the broad spectrum of low-energy tunnelling excitations responsible for the anomalous thermal
properties, whereas their resonant and relaxational interaction with the phonon bath creates
anomalous response properties. At temperatures (energies) in the Bose peak region, the main
excitations appear to be soft quasi-harmonic. Their origin and precise nature is much debated
(e.g. [8–12]); in any case, strong hybridization between these states and the phonon bath is
likely to be an important feature.

One of the remarkable aspects of glassy low-temperature anomalies is their considerable
degree of universality. Two main contending theories are available to explain this fact:
following ideas of Yu and Leggett [13], universality has been understood as a collective
effect due to interactions between quantized excitations, i.e. the tunnelling systems [14];
alternatively universality is regarded as a consequence of the irregularities of the potential
energy landscape that are frozen in at the glass transition, leading to a broad spectrum of
quantized low-energy tunnelling excitations [15, 16]. The potential energy landscape being
itself a collective affair generated through the interactions of constituent particles, one is led
to expect a certain degree of insensitivity to detail of the low-temperature anomalies. This
line of reasoning has been made more explicit in [17], and the key feature responsible for the
universality of the low-temperature anomalies was demonstrated to be a clear separation of
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the energy scales frozen in at the glass transition on the one-hand side, and that responsible for
the low-temperature physics on the other-hand side. A simple explanation for the mysterious
so-called quantitative universality, according to which not only power laws describing the
variation of some thermodynamic functions with temperature, but also prefactors in these
power laws are insensitive to detail, was also provided [17].

The main purpose of the present investigation is to improve upon the models investigated
in [15–17], and consider variants in which interactions are finitely coordinated, keeping them
random though, as a schematic way of modelling a frozen glassy state. Our investigation will
exploit the fact that the understanding of dilute random systems—introduced many years ago
by Viana and Bray [18]—has witnessed significant progress in the last few years, regarding
their equilibrium properties [19–21], as well as their dynamic behaviour [22–26].

The remainder of the paper is organized as follows. In section 2, we introduce our model,
and demonstrate how a finitely coordinated random model arises as a natural candidate to
describe the physics of a glassy low-temperature phase. We will look in detail only at a
simplified version with scalar degrees of freedom. We describe the solution of the model
using replica and mean-field techniques in section 3. However, in section 3.1, we evaluate
only a replica-symmetric (RS) approximation to the full theory. It turns out to have a similar
complexity as a 1-RSB solution in models with discrete degrees of freedom. The key quantity
appearing in the theoretical description is a full distribution of effective single-site potentials
which needs to be determined self-consistently. A population-based stochastic algorithm is
used to solve these RS self-consistency equations. The general set-up is very flexible and
can be investigated for a broad spectrum of assumptions about the nature of the microscopic
interactions as well as the connectivity distributions.

In section 4, we evaluate the theory for models in which the microscopic interactions are
purely harmonic, in which case the effective single-site potentials turn out to be harmonic
as well; the distribution of the single-site potentials is then equivalent to a distribution of
localization lengths used earlier in the description of systems of such type [27–31], which
may be thought of as systems in their gel phase. For structural glasses characterized by
frustration and anharmonicities in the microscopic interactions, investigated in section 5, the
distribution of single-site potentials involves anharmonicities of all orders, and both single-well
and double-well potentials are observed, the latter with a broad spectrum of barrier heights.
Although initially designed as models for the description of the low-temperature phase, it
makes perfect sense to consider them also at high temperatures, where the microscopic
symmetries of the interaction energy are unbroken. The appearance of glassy phases, as
the temperature is lowered is marked by the appearance of asymmetries in the distribution of
single-site potentials, as previously observed for fully connected systems. We investigate the
phase diagram for a model system of this kind and compute thermodynamic function across
the transition. As in fully connected systems, the transition is found to be continuous in our
anharmonic model, and in this aspect the model we are considering here remains deficient.
We discuss possible remedies of this deficiency in a concluding section.

Details of some of the calculations were relegated to the appendices. The paper closes
with a summary and an outlook on future interesting lines of research.

2. The model

We consider a many-particle system described by the Hamiltonian

H =
∑

i

p2
i

2m
+ Uint({ri}) (1)
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with an interaction energy taking the form

Uint =
∑
(i,j)

φ(ri − rj ) +
∑

i

V (ri ). (2)

Our initial goal is to attempt a microscopic, albeit schematic description of the physics
of an amorphous random solid. We proceed as follows. To begin with, we decompose
each particle coordinate ri into a fixed reference coordinate Ri and a relative coordinate
ui characterizing the (small) excursion from their respective reference position. As long as
particle diffusion is absent, i.e. in low-temperature solid phases, no approximation is involved
in this decomposition5. Supposing that the initial pair potential has an effectively finite range,
the interaction potential can then be formulated in terms of local connectivity variables and a
(random) potential depending only on the relative coordinates.

The connectivity is characterized by a matrix C with elements cij , such that cij = 1 for
close particles, for which |Ri − Rj | � rc, with rc denoting the interaction range of the initial
pair potential φ, and cij = 0 if |ri − rj | � |Ri − Rj | � rc and so φ(ri − rj ) � 0. The
interaction potential (2) may then be rewritten as

Uint =
∑
(i,j)

cijφij (ui − uj ) +
∑

i

Vi(ui ). (3)

Here the symbol (i, j) is used to denote pairs of sites; non-zero pair potentials φij and single-
site potentials Vi may vary from pair to pair and site to site, thus introducing residual disorder
(arising, e.g., from interactions between different species, random nonzero Ri −Rj , etc, in the
case of pair potentials, and the coupling of different species to external fields in the case of the
single-site potentials); we will specify φ and V only later. One may think of the φij (ui − uj )

as of a Born–von Karman expansion of the interaction potential about the reference positions
carried to all orders. In case one is interested mainly in low-temperature phenomena, one
would expect that some low-order expansion of φij should be sufficient to capture the essential
physics.

As a crucial last ingredient, which renders the model solvable, we consider connectivity
matrices C = {cij } which are not created as a consequence of an underlying geometrical
arrangement of the interacting particles as described above, but rather we take them to be
random. We assume that the local coordination number Li of site i is distributed according
to a distribution PC(L), with finite average connectivity C = ∑

L LPC(L) = 1
N

∑
i Li , and

that the probability that two sites i �= j with coordination numbers Li, Lj are connected (i.e.
that cij = cji = 1) is proportional to LiLj (no correlations). The adjacency matrices C in the
ensemble determined by PC(L) then have the following distribution:

Pc(C|{Li}) = 1

N
∏
(i,j)

pC(cij )δcij ,cji

∏
i

δLi ,
∑

j (�=i) cij
, (4)

where N is a normalization constant. It turns out that the distribution (4) is independent of the
conditioning {Li} in the large-N limit, for any typical realization of the set {Li} compatible
with a given distribution

PC(L) = 1

N

∑
i

δL,Li
(5)

5 It may be appropriate to point out the following subtlety to fend off potential misunderstandings. Whereas in the
continuum elasticity theory the displacement field need not be uniquely defined, if topological defects are present
(see, e.g., Kröner’s incompatibility theory [32]), no such ambiguity arises in our approach, which uses the particle’s
coordinates rather than a continuous displacement field.
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of coordination numbers. A priori single-bond probabilities

pC(cij ) = C

N
δcij ,1 +

(
1 − C

N

)
δcij ,0 (6)

compatible with the average connectivity C are also included in (4), as a matter of convenience
rather than necessity, as constraints coming from the full distribution of coordination numbers
are also encoded in (4). Other, equivalent formulations are possible as noted in appendix A.
Note that for PC(L) = CL

L! exp(−C) the connectivity matrix is that of an Erdös–Renyi random
graph.

We summarize the most severe approximations made in the derivation of our model: we
have introduced quenched random interactions in analogy with spin-glass models, whereas
in structural glasses the disorder is self-induced. Only pairwise interactions have so far
been considered, which is presumably adequate for metallic or colloidal glasses but is not
appropriate for silicate glasses or other network forming disordered systems, where one would
expect three-body interactions [33] as well as bond bending forces to play a role. We note,
however, that this is not a restriction of principle for the applicability of our methods (see,
e.g., [34]). Finally, the random connectivity of our model only takes into account the finite
coordination of the particles and not their geometric arrangement in three-dimensional space.

Given these approximations, the model can be solved within the replica mean-field theory.
The nature of the random pair and single-site potentials, as described by the normalized
probability densities Pφ[φ] and PV [V ] as well as the distribution PC(L) of coordinations can
be left open for the time being. Specifying them in different ways one has access to a variety
of different physical systems.

3. Replica analysis

The generator of all the relevant physical quantities is the free energy, −Nβf (β) = ln(ZN),
and using the standard replica trick 〈log Z〉 = limn→0 n−1 log〈Zn〉, we need to calculate the
average of the n-fold replicated partition function over the bond disorder, i.e. C and φij ,

〈
Zn

N

〉
C,φ

=
〈∫ ∏

i,a

dua
i exp

{
−
(

β
∑

(i,j),a

cijφij

(
ua

i − ua
j

)
+
∑
i,a

Vi

(
ua

i

))}〉
C,φ

. (7)

Free energies are manifestly self-averaging w.r.t. any form of (finite-dimensional) site disorder,
which is why taking a V -average is not required here. It is useful to introduce the short-hand
notation ũ = (u1, . . . ,un) for a replicated vector, and the replica interaction (bond) and
single-site weights

Ub(ũ, ṽ, φ) ≡ exp

(
−β

∑
a

φ(ua − va)

)
, Us(ũ, V ) ≡ exp

(
−β

∑
a

V (ua)

)
. (8)

The line of reasoning involved in performing the average over connectivity matrices for
non-Poissonian connectivity distribution closely follows [35]. Constraints on the local
connectivities in the C-average are enforced via the identity

δKi,Li
=
∮

dzi

2π izi

z
(Ki−Li)
i . (9)

It is found that the average of the replicated partition function can be written as a functional
integral over the ‘replica density’

ρ(ũ) ≡ 1

N

∑
i

ziδ(ũ − ũi ). (10)
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Enforcing its definition in terms of conjugate variables ρ̂(ũ) we obtain after some standard
steps (for details see appendix A)〈
Zn

N

〉
C,φ

= 1

N

∫
DρDρ̂ exp

{
N

(
C

2
(Gb[ρ] − 1) − Gm[ρ, ρ̂] + Gs[ρ̂]

)}
, (11)

where

Gb[ρ] =
〈∫

dũ dṽ ρ(ũ)Ub(ũ, ṽ, φ)ρ(ṽ)

〉
φ

Gm[ρ, ρ̂] =
∫

dũ dṽ ρ̂(ũ)ρ(ũ)

Gs[ρ̂] =
∑
L

PC(L)

〈
ln
∫

dũ ρ̂L(ũ)Us(ũ, V )

〉
V

(12)

The path integral is dominated by its saddle point, and the functional variation with respect to
ρ(ũ), and ρ̂(ũ) leads to the stationarity conditions

ρ̂(ũ) = C

〈∫
dṽ Ub(ũ, ṽ, φ)ρ(ṽ)

〉
φ

(13)

ρ(ũ) =
∑
L

PC(L)L

〈
ρ̂L−1(ũ)Us(ũ, V )∫
dṽρ̂L(ṽ)Us(ṽ, V )

〉
V

. (14)

3.1. Replica symmetry

In order to be able to take the limit n → 0 in (11)–(14) as required for the replica method, we
need to make an ansatz for the replicated density ρ in (10) and its conjugate ρ̂, which assumes
certain symmetry properties under permutation of the replicas. Within the present paper, we
shall only explicitly deal with a replica symmetric (RS) ansatz. Variants which would break
the symmetry between replicas are fairly straightforward to write down (see appendix A), but
for the model class studied in the present paper they turn out to be extremely complex and
difficult to handle numerically. The reader will appreciate this statement once the RS theory
has been developed.

The RS ansatz describes a situation with unbroken replica symmetry, and without the loss
of generality both ρ(ũ) and its conjugate ρ̂(ũ) can be written as (functional) superpositions
of products of single-replica functions of the form

ρ(ũ) =
∫

Dψ π [ψ]
∏
a

exp(−βψ(ua))

Z[ψ]
(15)

ρ̂(ũ) = C

∫
Dψ̂ π̂ [ψ̂]

∏
a

exp(−βψ̂(ua))

Z[ψ̂]
. (16)

Here we use the convention

Z[f ] ≡
∫

du exp(−βf (u)), (17)

i.e. the single-replica functions in (15) and (16) are taken to have Gibbsian form, with functions
ψ and ψ̂ denoting single-replica potentials that generate the Gibbs distributions in question.
Note that Dψ and Dψ̂ are suitable measures in function space. With the prefactor C as chosen
in (16), it turns out that, both π and π̂ are normalized probability density functions (pdfs)
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over function space (see appendix A). In terms of these specifications, the replicated partition
function (11) may be re-expressed as a functional integral over π and π̂ in a way that allows
us to isolate the leading order in n (i.e. O(n) in the limit n → 0). One obtains an expression
of the form

〈
Zn

N

〉
C,φ

∼
∫

Dπ Dπ̂ exp

(
nN

{
C

2
Gb[π ] − CGm[π, π̂ ] +

∑
L

PC(L)Gs,L[π̂]

})
, (18)

On introducing

Z2[f, g, h] ≡
∫

du dv exp(−β(f (u) + g(v) + h(u,v))), (19)

and shorthands of the form Dπ [ψ] = Dψπ [ψ] and {Dπ̂}L ≡ ∏L
� Dπ̂[ψ̂�], one can express

the three functionals appearing in (18) as

Gb[π ] �
∫

Dπ [ψ1]Dπ [ψ2]

〈
ln

(
Z2[ψ1, ψ2, φ]

Z[ψ1]Z[ψ2]

)〉
φ

(20)

Gm[π, π̂ ] �
∫

Dπ [ψ]Dπ̂[ψ̂] ln

(
Z[ψ + ψ̂]

Z[ψ]Z[ψ̂]

)
(21)

Gs,L[π̂ ] �
∫

{Dπ̂}L
〈

ln

(
Z
[∑L

�=1 ψ̂� + V
]

∏L
�=1 Z[ψ̂�]

)〉
V

. (22)

All L (coordination number) summations are over non-negative integers (and the convention
is used that an empty product evaluates to unity).

Note that one can easily identify a bond (i.e. pair-interaction) term Gb, a mixture term Gm

and coordination number L-dependent single site terms Gs,L.
The precise form of the various functions and parameters is obtained from the stationarity

condition with respect to variations of π , which involves solving stationarity conditions w.r.t.
the conjugate functional and π̂ as well (Lagrange multipliers λ, λ̂ are introduced to take care
of the normalization constraint on π and π̂ in the variational procedure). We finally obtain
(for details see, e.g., [19, 21]) the following coupled set of integral equations for π̂ and π :

π̂ [ψ̂] =
∫

Dπ [ψ]〈δ[ψ̂ − 
̂[ψ, φ]]〉φ (23)

π [ψ] =
∑
L

L

C
PC(L)

∫
{Dπ̂}L−1〈δ[ψ − 
[{ψ̂�}L−1, V ]]〉V (24)

in which the functions 
[{ψ̂�}L, V ] and 
̂[ψ, φ] are defined as


[{ψ̂�}L, V ] =
L∑
�

ψ̂� + V (25)


̂[ψ, φ] = −β−1 ln Zψ,φ (26)

with

Zψ,φ(v) ≡
∫

du exp(−βψ(u) − βφ(u − v)). (27)
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To summarize, we see that π̂ [ψ̂] can be obtained by sampling from Pφ[φ] and π [ψ],
while π [ψ] can be obtained by sampling from L

C
PC(L), PV [V ] and π̂[ψ̂]. This provides a

strategy of solving the fixed-point equations via a population dynamics-based algorithm.
In the saddle point the expression for the free energy (see appendix B) simplifies to

βf (β) = C

2

∫
Dπ [ψ1]Dπ [ψ2]〈ln Z2[ψ1, ψ2, φ]〉φ

−
∑
L

PC(L)

∫
{Dπ̂}L〈ln Z[
[{ψ̂}L, V ]]〉V . (28)

The internal energy is given by

E(β) = C

2

∫
Dπ [ψ1]Dπ [ψ2]〈〈φ(u − v) 〉b,2〉φ +

∑
L

PC(L)

∫
{Dπ̂}L〈〈V (u)〉s,L〉V , (29)

where 〈·〉b,2 denotes the Gibbs average corresponding to the bond energy


̂b[ψ1, ψ2, φ](u,v) = ψ1(u) + ψ2(v) + φ(u − v), (30)

while 〈·〉s,L is the Gibbs average corresponding to the single-site potential 
[{ψ̂�}L, V ].
Note that contributions to the internal energy arising from temperature dependences of the
distributions π and π̂ vanish owing to the stationarity condition on f (β) w.r.t. π and π̂ .

Thermal averages of arbitrary single-site observables are evaluated as Gibbs averages in
the ensemble (25) of effective single-site potentials Veff = ∑L

� ψ̂� + V , which are distributed
according to

P [Veff] =
∑
L

PC(L)

∫
{Dπ̂}L〈δ[Veff − 
[{ψ̂�}L, V ]]〉V , (31)

i.e. for an arbitrary observable of the form A = 1
N

∑
i A(ui ) we have that its thermal average

is given by

〈A〉 =
∫

DP [Veff]

∫
du A(u) exp(−βVeff(u))

Z[Veff]

=
∑
L

PC(L)

∫
{Dπ̂}L

〈∫
duA(u) exp(−β
[{ψ̂}L, V ](u))

Z[
[{ψ̂}L, V ]]

〉
V

. (32)

Note that for Poissonian random graphs, the ensemble of single-replica potentials ψ is
equivalent to the ensemble of effective single-site potentials Veff . This follows by comparison
of (24) and (31) on noting that L

C
PC(L) = PC(L−1) for Poisson distributions. This implies, in

particular, that the equivalence between the ensembles of single-replica potentials and effective
single-site potentials is lost for systems with connectivity distributions other than Poissonian.

We note that an alternative way of obtaining the replica symmetric theory is via the
Bethe–Peierls iterative method for obtaining free energies on (locally) tree-like structures
[20]. Appendix C gives a sketch of the reasoning for the present model class.

This concludes the general framework.

3.2. Orthogonal function representation

It should be clear that instead of working with the representation-free full functional set-up
described above, we could have chosen to represent the single-replica potentials ψ and ψ̂ in
terms of their expansions using a suitable complete set of basis functions {ϕµ}

ψ(u) =
∑

µ

xµϕµ(u) ≡ x · ϕ(u) (33)
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and analogously ψ̂(u) = x̂ · ϕ(u). Integrals over the function space are then replaced by
multiple integrals over expansion coefficients. It is convenient to choose the basis functions
{ϕµ} to be orthonormal with respect to a scalar product,

(ϕµ|ϕν) = δµ,ν, (34)

such that any function f spanned by {ϕµ} has an expansion

f (u) = f · ϕ(u), fµ = (f |ϕµ). (35)

Instead of (15) and (16) one would write

ρ(u) =
∫

dπ(x)
∏
a

exp[−βx · ϕ(ua)]

Z(x)
(36)

ρ̂(u) = C

∫
dπ̂(x̂)

∏
a

exp[−βx̂ · ϕ(ua)]

Ẑ(x̂)
(37)

for the replica density and its conjugate with Z(x) and Ẑ(x̂) fixed by a normalization condition.
Shorthands such as dπ(x) ≡ dx π(x) are being used in analogy to before.

Repeating the above line of reasoning one would obtain

π̂(x̂) =
∫

dπ(x)〈δ(x̂ − X̂(x, φ))〉φ (38)

π(x) =
∑
L

L

C
PC(L)

∫ L−1∏
�

dπ̂(x̂�)〈δ(x − XL−1({x̂�}))〉V (39)

with

XL−1({x̂�}) = (ϕ|V ) +
L−1∑

�

x̂� (40)

X̂(x, φ) = −β−1(ϕ|ln Zx,φ) (41)

and

Zx,φ(v) =
∫

du exp(−βx · ϕ(u) − βφ(u − v)) (42)

instead of (23)–(27). The distribution (31) of effective single-site potentials translates in an
obvious way into a corresponding distribution of their expansion coefficients in an orthogonal
function representation, given by

P(xeff) =
∑
L

PC(L)

∫ L∏
�

dπ̂(x̂�)〈δ(xeff − XL({x̂�}))〉V . (43)

An obvious advantage of explicit representations of this form is that one may use it to formulate
natural approximation schemes by truncating the expansions at some suitable finite order. A
corresponding disadvantage would be that such truncations can be expected to be efficient
only, if the system of basis functions is well adapted to the problem being studied.
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4. Harmonic couplings

The first model that we investigate is a random graph of harmonically coupled scalar degrees
of freedom with a distribution of the coupling strengths. We assume that there is no single-
site potential, so that the system is translationally invariant. The interaction energy between
connected vertices (i, j) of the graph is given by

φij (ui − uj ) = kij

2
(ui − uj )

2. (44)

Models of this type have been used to describe gels; typically, uniform distributions of cross-
link strengths P(kij ) = δ(kij − k) were chosen in that context [27–29]. Alternatively models
with random harmonic couplings on regular lattices [11] have been looked at in connection
with Bose-peak phenomena. Note that [29], which—unlike our present modelling—provides
a description preserving information about spatial structure, has recently been used to provide
a microscopic underpinning of a phenomenological model of an elasticity theory for soft
random solids based on randomly varying elastic constants [31]. In the present investigation,
we combine elements of random structure with random values for existing couplings.

It turns out that the case of harmonically coupled degrees of freedom provides the only
example where the population dynamics described above is closed within a parameter space
of finite dimensionality. In all other cases, finite-dimensional parameter spaces can only give
variational approximations to a full solution. It should be noted, however, that harmonically
coupled systems have unique ground states and therefore miss essential elements of glassy low-
temperature physics. For example, they are unable to support two-level tunnelling systems in
their potential energy landscape. On the positive side, one would expect the replica symmetric
approximation to be exact for such systems.

Since the local variables can take any real value, we take the modified Hermite polynomials
ϕµ(u) ≡ 1√

hµ

Hµ(u), with hµ = √
π2µµ! as the appropriate set of basis functions, in which

Hµ(u) are Hermite polynomials satisfying the recursion relation

Hµ+1(u) = 2uHµ(u) − 2µHµ−1(u), µ = 0, 1, 2, . . . ,∞, H0(u) = 1. (45)

The polynomials ϕµ are orthonormal with respect to the scalar product

(f |g) ≡
∫

du exp(−u2)f (u)g(u). (46)

In the present case the family of orthogonal polynomials can be truncated after ϕ2 to leave the
following set of basis functions:

{ϕµ(u)} =
{

1√
h0

,
2u√
h1

,
4u2 − 2√

h2

}
. (47)

In the fixed-point equations (39)–(41), the integral in (42), for φ(u − v) = k
2 (u − v)2, is

Gaussian and can be done analytically, such that X̂µ are determined as

X̂0 = x0 − 1

β
ln

√
2π

βka
−

√
h0

ka

(
2x2

1

h1
+

16x2
2

h2

)
, X̂1 = x1

a
, X̂2 = x2

a
, (48)

where

a ≡ 1 +
8x2√
h2k

,

thus leaving us with algebraic updates for the population dynamics only.
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Figure 1. Distribution π(x2) for a harmonically coupled system with homogeneous coupling
strengths kij ≡ 1 on a Poissonian random graph of average connectivity C = 4; the inverse
temperature is β = 1. Left: full distribution; right: zoom into the low x2 region. The δ-peak at
x2 = 0 in the left panel is not drawn to scale; its total weight corresponds to the fraction of vertices
not in the percolating cluster.

We observe that a positive x2 generates a positive X̂2, thus guaranteeing stability starting
from distributions π(x) and π̂(x̂) which are non-zero for x2, x̂2 ∈ IR+ only. We also note
that the evolution of the x0 and x̂0 distributions does not couple back into the distribution of
non-constant contribution to ψ(u) and ψ̂(u) respectively. Finally, it is interesting to observe
that the distributions of x1, x2, x̂1 and x̂2 are temperature independent for the harmonic system,
while the x0 and x̂0 distributions exhibit a non-trivial temperature dependence.

The results are presented in the following figures. Figure 1 shows the distribution of the
expansion coefficient x2 of the single-replica potential in an expansion in modified Hermite
polynomials as explained above, for a Poissonian random graph. As mentioned before, this
is in the present case equivalent to the distribution of the expansion coefficient xeff,2 of the
(purely harmonic) effective single-site potential. The expansion coefficient xeff,2 is, in turn,
related to the localization length ξ of the particles via

ξ−2 = β
8xeff,2√

h2

. (49)

The multiple-peak structure in the distribution of localization lengths is notable, and related to
the fact that localization lengths of different particles are to the first approximation determined
by their coordination—the clearly discernible seven peaks in the left panel of figure 1
corresponding to coordinations L = 1 (dangling bond) to L = 7. These results have in
fact been obtained earlier for a different system [29]. A zoom into the low x2 (large ξ ) region
reveals significant substructure which shows that correlation lengths of particles depend in
fact also on coordinations of their neighbours (and on coordinations of next neighbours and
so on).

In figure 2, we show analogous results for a graph with non-Poissonian degree distribution,
assuming connectivities of the form L = 2 + L′ with L′ a Poissonian of mean 2. In effect,
therefore, we do again have mean connectivity C = 4. However, each particle has a
coordination at least 2, and there thus are no longer any isolated clusters of finite size,
the occurrence of finite closed loops being strongly (in fact exponentially in system size)
suppressed in the thermodynamic limit.

For the non-Poissonian random graph, a comparison with the distribution of the expansion
coefficient xeff,2 of the effective single-site potentials in figure 3 reveals that these ensembles—
while qualitatively similar—are indeed not identical.
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Figure 2. Distribution π(x2) for a harmonically coupled system with homogeneous coupling
strengths kij ≡ 1 on a non-Poissonian random graph of average connectivity C = 4 as described
in the text; the inverse temperature is β = 1. Left: full distribution; right: zoom into the low x2
region.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-1  0  1  2  3  4

P
(x

ef
f,2

)

xeff,2

Figure 3. Distribution P(xeff,2) for a harmonically coupled system with homogeneous coupling
strengths kij ≡ 1 on a non-Poissonian random graph of average connectivity C = 4 as described
in the text; the inverse temperature is β = 1.

As a last result for the harmonic system, we look at the distribution the expansion
coefficient xeff,2 for a system in which we have non-uniform coupling strengths in addition
to locally varying connectivities. In the present case, we took kij uniformly distributed in
[0, 1], and choose a non-Poissonian graph structure with C = 4 of the same type as before.
Due to the variability in kij , the peak structure in the xeff,2 distribution is smeared, and it is
no longer possible to associate a value of the localization length with a local connectivity,
simply by looking at the distribution. However, the method of determining the distribution of
effective single-site potentials easily allows us to monitor the contributions coming from sites
with different connectivities, as illustrated in figure 4.

5. Glassy systems with anharmonicities

The next model that we investigate is a random graph of coupled (scalar) degrees of freedom
with a distribution P(kij ) of harmonic coupling strengths and fixed anharmonic coupling
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Figure 4. Distribution P(xeff,2) shown together with separate contributions to it coming from
sites with connectivities L = 2, 3, . . . , 7, for a harmonically coupled system with couplings
kij ∼ U[0, 1] on a non-Poissonian random graph of average connectivity C = 4 as described in
the text; the inverse temperature is β = 1.

strength. Furthermore, we assume that there are non-random anharmonic single-site potentials.
The interaction energy between connected vertices (i, j) of the graph is taken to be of the form

φij (ui − uj ) = kij

2
(ui − uj )

2 + λ4(ui − uj )
4 (50)

and we introduce a vertex-independent single-site potential

V (ui) = g4u
4
i . (51)

If the support of P(kij ) contains negative couplings, at least one of the quartic couplings
λ4 or g4 must be positive for the system to be stable.

A fully connected variant of this model with g4 > 0 and λ4 = 0 was studied in [16], the
corresponding model with g4 = 0 and λ4 > 0 in [17]. For the purposes of describing glassy
low-temperature anomalies either form of stabilization by a quartic anharmonicity appeared
to be acceptable. Differences between low-temperature properties of the two models were
mainly in the details, although from a fundamental point of view the system with g4 = 0
would of course be preferable, since g4 �= 0 breaks the translational invariance.

For the purposes of the present investigation, we shall nevertheless stick to the local
stabilizing potentials, i.e. choose λ4 = 0 and g4 �= 0, because this form of stabilization is
numerically much easier to handle than its translationally invariant counterpart. We will turn
to anharmonic systems with full translational invariance in a separate publication.

From the solutions for the distributions π [ψ] and π̂ [ψ̂] of single-replica potentials one
obtains a distribution of effective single-site potentials via (31).

Using an expansion of effective single-site potentials Veff(u) in terms of the modified
Hermite polynomials used in section 4 to describe harmonic systems,

Veff(u) =
∑

µ

xµϕµ(u), (52)

the distribution of effective single-site potentials translates into a distribution of the expansion
coefficients {xµ} (to simplify notation, we drop the subscript ‘eff’ on the expansion
coefficients).

For systems with (quartic) anharmonicities, the solution of the fixed-point equations (23),
(24) involves distributions of single-replica potentials ψ and ψ̂ with support on potentials
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having anharmonicities of all orders. Any finitely truncated orthogonal function representation
of these distributions would therefore only generate an approximate solution to the full problem
(on top of the approximation implied in the RS assumption). It is therefore advisable to use
the full functional approach (not least in order to check the quality of finite-dimensional
approximations). Below we therefore show distributions of some low-order expansion
coefficients as obtained in the functional approach and compare them with corresponding
distributions obtained within a low-order truncation scheme.

We fix the energy scale of the system by setting g4 = 1, and introduce frustration in
the system by taking Gaussian-distributed harmonic couplings, kij ∼ N (0, σk). A system
of this type then undergoes a transition from a symmetric high-temperature phase, in which
all effective single-site potentials respect the microscopic inversion symmetry of the original
interaction energy Veff(u) = Veff(−u), to a glassy low-temperature phase, in which this
symmetry is spontaneously broken, i.e. which is described by an ensemble of single-site
potentials for which typically Veff(u) �= Veff(−u). This transition occurs at a temperature
Tc which depends on the strength σk of the disorder (and of course on the connectivity
distribution). Indeed, for a combination of quadratic and quartic potentials as chosen in
the present setup, the dimensional analysis reveals that the critical condition should have a
parameter dependence of the form

Tc(σk, g4) = σ 2
k

g4
Tc(1, 1) (53)

as already found for the fully connected system [17]. Here the value of Tc(1, 1) still
depends, of course, on the connectivity distribution. For example, for the system with the
non-Poissonian connectivity distribution with average degree C = 4 looked at earlier, we
determined Tc(1, 1) = 0.932 ± 0.005 ⇔ βc(1, 1) � 1.073, and we verified the scaling (53)
with high precision within the full functional treatment of the self-consistency equations. It
is important to note, however, that approximate treatments, such as the low-order orthogonal
function approximation procedure, need not respect this scaling of Tc(σk, g4), though we found
them to be not far off.

The transition to glassy order at low temperatures is continuous in the sense that
widths of the distributions of the expansion coefficients x1, x3, x5, . . . coupling to anti-
symmetric functions go to zero continuously as the transition temperature is approached
from below. Figure 5 illustrates this for a system with a non-Poissonian connectivity
distribution of the type used in section 4 with C = 4 and σk = 1. If an orthogonal function
representation of the single-replica functions in terms of Hermite polynomials, truncated at
order four is used instead of the full functional approach, we find the order of the transition
to be unchanged, though the transition point is shifted to a sligthly higher temperature
Tc(1, 1) � 1.043 ⇔ βc(1, 1) � 0.959 (differing from the exact value by approximately
3%).

We note that the population-dynamics algorithm exhibits critical slowing down as the
transition is approached, in figure 5. It is therefore crucial to use sufficiently long runs
and small temperature steps close to the transition to ensure that the algorithm has properly
converged before taking measurements.

Figure 6 shows distributions of expansion coefficients for a system with the non-
Poissonian connectivity distribution used before, at σk = 1.1 for T = 1 and T = 0, and
compares distributions obtained from a full functional solution with those computed in an
orthogonal function representation using Hermite polynomials that is truncated at order 4.
Semilogarithmic plots are used to exhibit the behaviour in the tails of the distributions. Each
panel in figure 6 contains four curves, two for results taken at T = 1 (narrower in the
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Figure 5. Width σ(x1) of the distribution of the first expansion coefficient x1 in the ensemble of
effective single-site potentials. The width goes to zero with a square-root singularity at βc � 1.073.
A fit displaying a square-root singularity with analytic corrections describes the data very well
over a wide range of inverse temperatures. For this system σk = 1.

tails) and two for results taken at T = 0 (wider in the tails). The two curves computed for
each temperature correspond to solutions obtained within the full functional approach and to
solutions obtained by truncating expansions of single-replica potentials in terms of Hermite
polynomials at order 4, respectively. At T = 0, the full functional and the truncated expansion
results are virtually indistinguishable, except perhaps for P(x1). At T = 1, the distributions of
odd coefficients x1, x3, . . . (left set of panels) appear to be affected by the low-order truncation
in a slightly stronger way than the distributions of even-order coefficients, x2, x4 . . . (right
set of panels), and distributions of low-order coefficients appear to be systematically slightly
wider when computed via a truncated expansion approach; the main reason seems to be that
the low-order truncation has slightly higher critical temperature, and with identical parameter
settings, the system appears to be deeper in the glassy phase when described within the
low-order truncation scheme than when described in terms of full functional self-consistency.

It should be noted that there are strong correlations between the expansion coefficients that
can be exhibited, e.g. by computing their correlation coefficients or by inspecting scatterplots
of individual realizations. Figure 7 shows some examples. For the system under investigation
we found the (x2k−1, x2�) scatterplots to be similar up to scaling and symmetry transformations;
analogous similarities exist in (x2k, x2�) families at fixed k.

Differences between the full functional solutions and those obtained within a low-
order expansion become rapidly less pronounced when moving away from the transition
temperature. This is particularly clear in the zero-temperature limit where an orthogonal
function representation truncated at order 4 describes the results remarkably well, as seen
in the wider set of curves also displayed in figure 6. This might have been anticipated, as
anharmonicities typically play a less significant role at low temperatures.

Another feature that deserves mention is that the distribution P(x2) of the second-order
coefficient is hardly temperature dependent at all (e.g., the zero-temperature limit of this
distribution is virtually indistinguishable from the one at T = 1 (as seen in the second panel
of figure 6) whereas all other distributions do show a noticeable variation with temperature.
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Figure 6. Distributions of low-order expansion coefficient xµ, µ = 1, . . . , 8 in the ensemble of
effective single-site potentials for σk = 1.1. The left set of panels shows distributions of odd-order
coefficients x1, x3, x5 and x7, the right set of panels those of even-order coefficients x2, x4, x6 and
x8. See the main text for an extensive description and discussion of the figure.

Figure 8 gives the phase diagram of the system, showing the transition temperature as a
function of the strength σk of the disorder in the harmonic coupling constants.
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Figure 7. Scatterplots showing two-dimensional projections of vectors of expansion coefficients
for realizations of effective potentials. Panels (a)–(g): (x1, x2), (x1, x3), . . . , (x1, x8); panels
(h)–(j):(x2, x4), (x2, x6), (x2, x8); panels (k), (l): (x4, x6) and (x4, x8); and panel (m): (x6, x8).

In figure 9, we show free energy, internal energy, entropy and specific heat as functions of
temperature, for σk = 1 and g4 = 1, so that Tc � 0.93. The specific heat is obtained through a
numerical differentiation from the internal energy, and becomes fairly noisy for temperatures
below T � 0.5. Note that the entropy becomes negative for T � 0.31, i.e. well inside the
glassy phase. As our system has continuous degrees of freedom, no strong conclusions can be
drawn from this observation however. It must be pointed out, though, that we expect replica
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Figure 9. Thermodynamic functions: free Energy f (first panel), internal energy E (second panel),
entropy S (third panel) and specific heat C (fourth panel).

symmetry to be broken throughout the low-temperature phase, and that our results require
further checks, e.g. through simulations.

Finally, a word on numerics may perhaps be in order. It turns out that a good compromise
between control and efficiency in evaluating functions like 
̂[ψ, φ] on a sufficiently dense
grid of points v via (27) as required for the population dynamics algorithm, is to use Gaussian
quadratures with sufficiently many grid points. Further acceleration of numerical procedures
is possible by evaluating functions initially on coarser grids, and obtaining their values on the
fine grids required for further processing via suitable interpolation algorithms.
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6. Conclusion

We have introduced and solved a wide class of random models with finite connectivity for the
description of amorphous solid phases. The emphasis in the present paper is still very much
on developing the theoretical tools for the description of such systems. The description is in
terms of deviations of particle positions from a set of reference positions. The framework is
kept general in the sense that we do not need to restrict the nature of the interaction potential,
or the nature of the connectivity distribution, as long as they allow taking a meaningful
thermodynamic limit. Although, we have in the present paper only elaborated on the theory
for systems with pairwise interactions, we would like to point out that systems with many-body
potentials are clearly within reach of our methods. Such potentials would have to be included
in a proper description of network glasses. By varying the connectivity distributions or the
nature of interaction potentials we expect to be able to describe a fairly wide spectrum of
different physical systems.

In the present paper, we have looked in detail only at harmonically coupled systems with
scalar degrees of freedom, which ought provide an appropriate description for sufficiently
weakly disordered systems in which equilibrium positions, though irregular, are still unique,
and at a model with local quartic anharmonicities which could be used to describe glassy
low-temperature properties. The transition to the phase with frozen glassy order in the model
considered here is continuous, as in the corresponding fully connected variant. In this respect,
the description of glass-transition physics within this model must still be regarded as deficient.
This may or may not be due to the fact that the low-order expansions of the interaction energy
chosen in the present paper can be considered as adequate description of the physics only in
the limit of low temperatures.

For harmonic interactions the distribution of single-site potentials reflects the distribution
of localization lengths, which measures the size of thermal excursions of localized particles
away from their reference position. The localization length of a particle is determined by its
connectivity and the strength of the interaction. The influence of the degree of coordination can
be isolated in a model with uniform interactions only. In this case the distribution of localization
lengths consists of isolated peaks, each peak corresponding to a definite coordination number.
Similar behaviour has been observed in highly crosslinked gels. Even for uniform interactions
the localization length is not uniquely determined by the coordination number only, but is
sensitive also to the coordination of nearest neighbours, next-nearest neighbours and so on.
In a harmonic system with non-uniform interaction strengths, the correlation between
localization length and local coordination becomes less obvious, as the peaked structure
of the distribution of localization lengths is lost. However our methods allow us to evaluate
the localization length distribution conditioned on the local coordination and thereby exhibit
what remains of these correlations. As shown in figure 4, and as of course expected, particles
with higher coordination tend to be more strongly localized.

A similar analysis can be performed for the full distribution of single-site potentials
in the system with quartic anharmonicities, although in this case distributions of expansion
coefficients of effective single-site potentials of all orders have to be monitored, and the
interpretation is less straightforward than in the case of harmonic potentials. Here, we only
mention the general trend that all distributions of expansion coefficients shown in figure 6
(and presumably those of higher order expansion coefficients as well), when conditioned on
the value of the local coordination, become broader with increasing coordination.

One promising possibility of improving the description of glass-transition physics within
the present model class would be to look at models with non-confining interaction potentials.
This would inter alia allow obtaining more adequate descriptions of high-temperature phases,
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as phases with vanishing inverse localization lengths (delocalized particles). It remains to be
seen whether this modification could put our model into the class for which glass-transition
physics would be described by the succession of dynamic freezing and entropy-crisis scenario
thought to be appropriate for structural glasses.

Other problems we might be able to shed some analytic light on are correlations between
coordination and effective potential statistics (only first qualitative steps have so far been
undertaken in this direction) or—by looking at mixtures of different particle species—the
correlations between particle species and their enhanced or depressed role in the formation of
tunnelling centres in amorphous systems.

Another open question is related to the fact that the present models—unlike their fully
connected counterparts—are not completely described in terms of ensembles of effective non-
interacting single-site problems. The two-particle contribution appearing in the free energy is
a consequence of the fact that finite connectivity systems of the type considered here would
no longer support simple single-particle excitations. It is conceivable that the two-particle
contribution would allow an interpretation similar to the ‘heat-bath’ of phonons acting on
tunnelling systems that is introduced in an ad hoc manner into phenomenological models of
glassy low-temperature anomalies [6, 7, 36].

We intend to look into some of these questions in future publications.
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Appendix A. Details of the replica analysis

A.1. Averaging the replicated partition function

Given the distribution (4) of connectivity matrices, the average (7) of the replicated partition
function has the following structure:

〈
Zn

N

〉
C,φ

= T
N

≡
〈∏

(i,j) Trcij
pC(cij )δcij ,cji

∏
i δLi ,

∑
j (�=i) cij

Zn
N

〉
φ∏

(i,j) Trcij
pC(cij )δcij ,cji

∏
i δLi ,

∑
j (�=i) cij

. (A.1)

Note that both the cij summations and the average over local pair potentials φij , factor w.r.t.
the pairs (i, j).

It should be mentioned that other, equivalent ways of introducing the ensemble of
connectivity matrices are possible. For example, one could include summations over all
possible assignments of local connectivities {Li} compatible with a given PC(L) in both
T and N in (A.1), without changing final results, as this would just create contributions
coming from the entropy of the connectivity distribution in T and N , which cancel. Similarly,
one could omit including the single-bond distributions pC(cij ) in T and N , as long as the
constraints required by the desired connectivity contribution PC(L) are kept—at the cost of
considerably complicating the algebra, and without changing final results. In what follows,
we stick to the version embodied in (A.1).

To evaluate (A.1), one uses integral representations of the form (9) to express the
constraints on the local coordinations Li . The normalization constant N in (A.1) is then
transformed into an integral expression, which can be evaluated via the saddle-point method,
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along the following transparent sequence of steps:

N =
∏
(i,j)

Trcij
pC(cij )δcij ,cji

∏
i

∮
dzi

2π izi

z
(
∑

j (�=i) cij −Li)

i

=
∏

i

∮
dzi

2π izi

z
−Li

i

∏
(i,j)

Trcij
pC(cij )(zizj )

cij

�
∏

i

∮
dzi

2π izi

z
−Li

i e( C
2N

∑
i,j (zi zj −1))

=
∫

dρ̂0 dρ0

2π/N
exp

(
N

{
C

2

(
ρ2

0 − 1
)− ρ̂0ρ0

})∏
i

∮
dzi

2π izi

z
−Li

i eρ̂0zi

=
∫

dρ̂0 dρ0

2π/N
exp

(
N

{
C

2
(ρ2

0 − 1) − ρ̂0ρ0 +
1

N

∑
i

ln

(
ρ̂

Li

0

Li!

)})
. (A.2)

Here, we used large-N asymptotics to re-exponentiate the cij averages in line 2, and introduced
ρ0 ≡ 1

N

∑
i zi , enforced by the conjugate ρ̂0 to obtain an expression that can be evaluated by

the saddle-point method and finally exploited the fact that (9) entails∮
dz

2π iz
z−Lf (z) = 1

L!

∂Lf (z)

∂zL

∣∣∣∣
z=0

. (A.3)

As Li are distributed according to PC(L), the last contribution in the exponent in (A.2) can

be expressed as the L-average
∑

L PC(L) ln
( ρ̂L

0
L!

)
by the law of large numbers. In the saddle

point of (A.2), i.e. (ρ0 = 1, ρ̂0 = C) we finally have

N ∼ exp

(
N

{∑
L

PC(L) ln

(
CL

L!

)
− C

})
. (A.4)

Given any typical realization of local potentials {Vi, i = 1, . . . , N}, and using the
shorthands (8) for the replicated bond and site weights we have for the nominator T in (A.1),
the following similar lines of reasoning:

T =
∏

i

∫
dũi Us(ũi , Vi)

∏
(i,j)

Trcij
pC(cij )δcij ,cji

〈( Ub(ũi , ũj , φ))cij 〉φ
∏

i

δLi ,
∑

j (�=i) cij

�
∏

i

∫
dũi Us(ũi , Vi)

∮
dzi

2π izi

z
−Li

i e
C

2N

∑
i,j zi zj 〈Ub(ũi ,ũj ,φ) 〉φ− CN

2

=
∫

DρDρ̂ exp

(
N

{
C

2
(Gb[ρ] − 1) − Gm[ρ, ρ̂]

})

×
∏

i

∫
dũi Us(ũi , Vi)

∮
dzi

2π izi

z
−Li

i ezi ρ̂(ũi )

=
∫

DρDρ̂ exp

(
N

{
C

2
(Gb[ρ] − 1) − Gm[ρ, ρ̂] + Gs[ρ̂]

]})
. (A.5)

Definition (10) of the replica density enforced by a conjugate ρ̂(ũ) was used to express the
result in terms of a path integral that can be evaluated by the saddle-point method.

The three functionals appearing in (A.5) are given as

Gb[ρ] =
〈∫

dũ dṽρ(ũ)Ub(ũ, ṽ, φ)ρ(ṽ)

〉
φ

Gm[ρ, ρ̂] =
∫

dũ ρ̂(ũ)ρ(ũ)

(A.6)
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Gs[ρ̂] =
∑
L

PC(L)

〈
ln
∫

dũ
ρ̂L(ũ)

L!
Us(ũ, V )

〉
V

, (A.7)

where the law of large numbers is used to write Gs as an average over the site disorder (in Li

and Vi).

A.2. Replica symmetry

We proceed by making an ansatz for ρ and ρ̂ which amounts to assuming unbroken replica
symmetry (RS)

ρ(ũ) =
∫

Dψπ [ψ]
∏
a

exp[−βψ(ua)]

Z[ψ]
(A.8)

ρ̂(ũ) =
∫

Dψ̂π̂ [ψ̂]
∏
a

exp[−βψ̂(ua)]

Z[ψ̂]
, (A.9)

where π and π̂ are functionals over the space of single-site potentials and Z[ψ] and Z[ψ̂] are
defined via (17). We then obtain

Gb[ρ] � ρ2
0 + n

∫
Dπ [ψ1]Dπ [ψ2]

〈
ln

(
Z2[ψ1, ψ2, φ]

Z[ψ1]Z[ψ2]

)〉
φ

Gm[ρ, ρ̂] � ρ0ρ̂0 + n

∫
Dπ [ψ]Dπ̂[ψ̂] ln

(
Z[ψ + ψ̂]

Z[ψ]Z[ψ̂]

)

Gs[ρ̂] �
∑
L

PC(L)

(
ln

(
ρ̂L

0

L!

)
+ n

∫
{Dπ̂}L

〈
ln

(
Z
[∑L

� ψ̂� + V
]

∏L
�=1 Z[ψ̂�]

)〉
V

)
,

(A.10)

where definition (19) of Z2, the convention {Dπ̂}L ≡ ∏L
� Dπ̂[ψ̂�], and the abbreviations

ρ0 ≡ ∫
Dπ [ψ] and ρ̂0 ≡ ∫

Dπ̂ [ψ̂] for full integrals over the functionals π and π̂ have been
used.

We first solve the saddle-point equations to O(1) = O(n0) in n, to obtain ρ0 = 1, and
ρ̂0 = C. This entails that the O(n0) contributions to T cancel with N and we finally obtain

〈
Zn

N

〉
C,φ

∼
∫

DπDπ̂ exp

(
nN

{
C

2
Gb[π ] − CGm[π, π̂ ] +

∑
L

PC(L)Gs,L[π̂ ]

})
, (A.11)

in which π and π̂ are now normalized functionals, and where

Gb[π ] �
∫

Dπ [ψ1]Dπ [ψ2]

〈
ln

(
Z2[ψ1, ψ2, φ]

Z[ψ1]Z[ψ2]

)〉
φ

(A.12)

Gm[π, π̂ ] �
∫

Dπ [ψ]Dπ̂[ψ̂] ln

(
Z[ψ + ψ̂]

Z[ψ]Z[ψ̂]

)
(A.13)

Gs,L[π̂ ] �
∫

{Dπ̂}L
〈

ln

(
Z
[∑L

�=1 ψ̂� + V
]

∏L
�=1 Z[ψ̂�]

)〉
V

. (A.14)

The saddle-point equations w.r.t. the normalized π, π̂ can then be expressed in the form (23)
and (24) as given in section 3.1.
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A.3. Breaking replica symmetry

It is expected that replica symmetry will be broken in phases with frozen glassy order. We
will, in the present paper, not go on to solve our models assuming phases with broken replica
symmetry. However we would, here, like to present at least the ansatz which would describe
phases with one level of replica symmetry breaking in the spirit of Parisi’ hierarchical scheme.
It is based on grouping the n replica in n/m blocks containing m replica each, and assuming
symmetry of the solution w.r.t. permutations of replica within blocks though not between
blocks. This would lead to

ρ(ũ) =
∫

DπP[π ]
n/m∏
k=1

∫
Dψkπ [ψk]

km∏
a=(k−1)m+1

exp[−βψk(u
a)]

Z[ψk]
(A.15)

ρ̂(ũ) =
∫

Dπ̂P̂[π̂]
n/m∏
k=1

∫
Dψ̂kπ̂ [ψ̂k]

km∏
a=(k−1)m+1

exp[−βψ̂k(u
a)]

Z[ψ̂k]
, (A.16)

as ansatz for the replica density (10) and the conjugate required to enforce its definition,
respectively. That is, we get a functional superposition of products of block-replica densities,
each of which a functional superposition of products of single-replica Gibbs distributions over
the replica within a block.

This ansatz would again allow us to formulate the n → 0 limit of the theory, and would
lead to fixed-point equations for the weight functions P , π , P̂ and π̂ that can be cast into a
form which would admit a solution in terms of a stochastic population-based algorithm—an
algorithm, however, which requires to maintain an ensemble of populations of the type used
in the RS version of the theory. In addition, there is the stationarity requirement on the free
energy with respect to the partitioning parameter m. The numerical effort required to solve
this problem will be considerable.

Appendix B. Free energy thermodynamic functions

The replica symmetric expression of the free energy as a functional of π and π̂ obtained
from (18) to (22) initially gives

−βf (β) = C

2

∫
Dπ [ψ]Dπ [ψ ′]

〈
ln

[
Z2[ψ,ψ ′, φ]

Z[ψ]Z[ψ ′]

]〉
φ

−C

∫
Dπ [ψ]Dπ̂[ψ̂] ln

[
Z[ψ + ψ̂]

Z[ψ]Ẑ[ψ̂]

]

+
∑
L

PC(L)

∫
{Dπ̂}L

〈
ln

[
Z
[∑L

�=1 ψ̂� + V
]

∏L
�=1 Ẑ[ψ̂�]

]〉
V

(B.1)

in which π and π̂ are taken to be solutions of the fixed-point equations.
Replacing logarithms of products (quotients) by sums (differences) of logarithms, and

recalling and 〈L〉 = C, we first get

−βf (β) = C

2

∫
Dπ [ψ]Dπ [ψ ′]〈ln[Z2[ψ,ψ ′, φ]]〉φ − C

∫
Dπ [ψ]Dπ̂[ψ̂] ln[Z[ψ + ψ̂]]

+
∑
L

PC(L)

∫
{Dπ̂}L

〈
ln

[
Z

[
L∑

�=1

ψ̂� + V

]]〉
V

. (B.2)
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In a second step, we express π̂ [ψ̂] appearing in the second integral by an integral over π [ψ]
via (23) to get∫

Dπ [ψ]Dπ̂[ψ̂] ln[Z[ψ + ψ̂]] =
∫

Dπ [ψ]Dπ [ψ ′]
∫

Dψ̂〈δ[ψ̂ − 
̂[ψ ′, φ]]〉φ ln[Z[ψ + ψ̂]]

=
∫

Dπ [ψ]Dπ [ψ ′]〈ln[Z[ψ + 
̂[ψ ′, φ]]]〉φ

=
∫

Dπ [ψ]Dπ [ψ ′]〈ln[Z2[ψ,ψ ′, φ]]〉φ.

In the last step, definitions (26), (27) of 
̂[ψ ′, φ]) were invoked. We thus note that the first
and second contributions to (B.2) can be combined so as to finally obtain (28).

The internal energy is obtained from the free energy via the relation E(β) = ∂
∂β

(βf (β)).

Appendix C. Bethe–Peierls method

The replica-symmetric fixed-point equations can be derived as resulting from a recursive
evaluation of the partition function of the system described by an energy function of the form

Uint =
∑
(i,j)

cijφij (ui − uj ) +
∑

i

V (ui) (C.1)

assuming that the collection of nodes forms a tree-like structure. Scalar degrees of freedom
and site-independent on-site potentials V are assumed for simplicity.

The restricted partition function computed at fixed value ui for the coordinate at i is

Zi(ui) = exp{−βV (ui)}
∫ ∏

j∈N (i)

duj exp{−βφij (ui − uj )}ZN (i)|i ({uj }j∈N (i)) (C.2)

in which N (i) denotes the set of vertices connected to vertex i. If the system were tree-like,
ZN (i)|i ({uj }j∈N (i)) would factor, so that

Zi(ui) = exp{−βV (ui)}
∏

j∈N (i)

∫
duj exp{−βφij (ui − uj )}Zj |i (uj ), (C.3)

where Zj |i (uj ) is the restricted partition function of the subtree rooted in j—excluding the tree
rooted in node i—evaluated at the value uj of the coordinate at the root-node j. We would
have the recursion

Zj |i (uj ) = exp{−βV (uj )}
∏

k∈N (j)\i

∫
duk exp{−βφjk(uj − uk)}Zk|j (uk). (C.4)

This recursion is the basis for the iterative Bethe–Peierls method for solving statistical
mechanical problems on tree-like structures.

The system we are considering is, however, only locally tree like, i.e. there are loops
with lengths of O(ln N). Factorization is therefore, in principle, only approximate. However,
if the system has only a single thermodynamic state and correlations decay exponentially
with distance (this is the situation of unbroken replica symmetry), then factorization would
be asymptotically exact in the thermodynamic limit, as common ancestors of two sites
neighbouring on a given site occur typically at distance O(ln N) if the given site is removed,
entailing that correlations are negligible in the thermodynamic limit.

One introduces cavity potentials ψ̂j |i (ui) associated with the factors appearing in (C.3)
via

exp{−βψ̂j |i (ui)} =
∫

duj exp{−βφij (ui − uj )}Zj |i (uj ). (C.5)
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For the restricted partition functions Zj |i (uj ) of the sub-trees themselves we have

Zj |i (uj ) = exp{−βV (uj )}
∏

k∈N (j)\i
exp{−βψ̂j |i (ui)}. (C.6)

In terms of the cavity potentials ψ̂j |i and the free energies ψj |i (uj ) associated with restricted
sub-tree partition functions via

Zj |i (uj ) = exp{−βψj |i (uj )} (C.7)

one has the recursion

ψj |i (uj ) = V (uj ) +
∑

k∈N (j)\i
ψ̂k|j (uj ) (C.8)

ψ̂k|j (uj ) = −β−1 ln
∫

duk exp{−βφjk(uj − uk) − βψk|j (uj )}
≡ −β−1 ln Zψk|j φjk

. (C.9)

The replica symmetric fixed-point equations derived in section (3.1) are now recovered by
observing that due to the locally varying coordination and the heterogeneity of the interaction
potentials φij associated with the edges (i, j) of the tree-like graph, the cavity potentials and
the restricted sub-tree free energies are random. Hence the iteration has to be formulated in a
probabilistic setting as an iteration for probabilities of finding certain restricted sub-tree free
energies ψ and cavity potentials ψ̂ . For a homogeneously disordered (locally) tree-like graph
this would lead to self-consistency conditions that have to hold in the thermodynamic limit.
Using equations (C.8) and (C.9) one finds

π [ψ] =
∑
L>0

L

C
PC(L)

∫ L−1∏
k=1

Dπ̂[ψ̂k]δ[ψ − 
L−1[{ψ̂k}]] (C.10)

π̂ [ψ̂] =
∫

Dπ [ψ̂]〈δ[ψ̂ − 
̂[ψ, φ]]〉φ (C.11)

for the self-consistency conditions, on a graph with connectivity distribution PC(L) of average
coordination C, and 
L−1 and 
̂[ψ, φω] are as defined via (25) and (26).
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